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ABSTRACT
The Internet of Things (IoT) has revolutionized data-driven applications but also introduced critical challenges in terms of
privacy, scalability, and computation. Federated Learning (FL), a decentralized machine learning paradigm, has emerged
as a promising solution to address these concerns by enabling local model training on devices without transferring raw
data. This review provides a comprehensive comparative analysis of existing FL frameworks and techniques in the
context of loT. We evaluate prominent frameworks such as TensorFlow Federated (TFF), Flower, and FATE, analysing
their architectural design, communication efficiency, security provisions, and performance across diverse loT scenarios.
We further explore various FL algorithms—such as FedAvg, Fed Prox—and optimization techniques including model
compression, differential privacy, and homomorphic encryption. Our findings highlight the trade-offs between accuracy,
resource consumption, and scalability, offering insights into framework suitability for applications like smart homes,
healthcare, and industrial IoT. Despite FL's potential, challenges remain in communication overhead, device heterogeneity,
security vulnerabilities, and system dynamics. We conclude by identifying key research opportunities, such as adaptive
personalization, robust privacy-preserving techniques, and scalable FL architectures.
Keywords: Federated learning, Internet of Things, privacy, security, framework comparison, performance evaluation,
distributed learning:
1. Introduction
The proliferation of 10T devices has led to an exponential increase in data generation and smart application development.
However, centralized machine learning approaches—dependent on aggregating data to central servers—raise significant
concerns regarding privacy, bandwidth limitations, and latency. In this context, Federated Learning (FL) emerges as a
suitable alternative, allowing model training directly on edge devices while preserving user privacy. FL’s decentralized
nature makes it highly relevant for loT systems characterized by resource constraints, heterogeneous data, and
intermittent connectivity. This review critically examines how different FL frameworks and techniques perform under
these constraints and identifies the trade-offs involved in real-world deployments.
The central research question addressed here is:
“How do existing FL frameworks and algorithms compare in their suitability and performance within loT
environments?
This study is significant because it bridges the gap between theoretical FL models and their practical deployment in IoT.
The review is organized as follows: Section 2 discusses FL foundations and benefits, Section 3 presents a comparative
analysis of FL frameworks and algorithms in loT, Section 4 addresses current challenges, Section 5 outlines future
research directions, and Section 6 concludes the study.
2. Federated Learning in loT: Foundations and Benefits
Federated Learning (FL) is a decentralized machine learning technique that enables multiple devices to collaboratively
train a shared model without exchanging raw data. In Internet of Things (loT) environments—where devices such as
sensors, wearables, and smart appliances generate vast amounts of sensitive data—FL offers an effective way to protect
privacy while leveraging distributed data for model training. Instead of sending data to a central server, FL allows each
device to train locally and only share model updates, significantly reducing communication costs and enhancing data
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security. This approach aligns well with the constraints of IoT devices, which often face limited bandwidth, processing
power, and battery life. Key benefits of FL in loT include enhanced privacy preservation, as sensitive data remains on the
device; lower network congestion through reduced data transmission; and scalability, as it can support a growing number
of devices. FL also improves fault tolerance—devices can join or leave without interrupting the process—and allows for
model personalization, enhancing relevance for individual devices. However, implementing FL in loT also introduces
challenges, such as non-lID data distribution, device heterogeneity, and intermittent connectivity, which must be
addressed to realize its full potential.
2.1 Core Concepts of Federated Learning (FL)
Federated Learning enables multiple edge devices to collaboratively train a shared global model while keeping data
localized. Only model updates (e.g., gradients or weights) are sent to a central aggregator for global update (e.g., via
FedAvg) Federated Learning (FL) is a decentralized approach to machine learning that allows multiple devices or
clients—such as smartphones, sensors, or loT endpoints—to collaboratively train a shared global model without
transferring raw data to a centralized server. The fundamental goal is to preserve data privacy while still enabling effective
model training across distributed data sources.
The process typically consists of the following steps:
e Local Training: Each participating device (client) trains the machine learning model on its own local dataset. This
allows the device to extract relevant patterns and features from its unique data without exposing that data externally.
¢ Model Aggregation: After local training, each device sends only its trained model parameters (such as weights or
gradients) to a central server. The server then aggregates these updates—often using algorithms like Federated

Averaging (FedAvg)—to update the global model. The updated global model is then redistributed to all devices for

the next training round.

This cycle continues iteratively until the model converges to an acceptable level of performance. Importantly, the raw data
never leaves the local device, making FL especially attractive in privacy-sensitive environments like healthcare, finance,
or smart home systems.

2.2 Key Advantages in loT

FL presents a number of compelling advantages when applied to lIoT ecosystems, where privacy, limited connectivity, and
scalability are major concerns:

e Privacy Preservation: Since data remains on-device, FL minimizes the risk of sensitive data being intercepted,
mishandled, or exposed during transmission. This approach supports compliance with data protection regulations
like GDPR and HIPAA.

e Reduced Communication Overhead: Instead of transmitting large volumes of raw data, only compact model
updates are shared. This is particularly useful in bandwidth-constrained loT settings, such as rural sensor networks
or mobile edge devices.

e Scalability: FL supports massive scaling across millions of devices, making it suitable for large lIoT deployments.
New devices can join or leave the training process dynamically, supporting a wide range of applications, from smart
cities to industrial automation.

e Fault Tolerance: The federated learning process is inherently robust to the intermittent availability of devices.
Devices can drop in or out of the process due to connectivity issues or power constraints without significantly
disrupting the overall model training cycle.

2.3 loT Characteristics Influencing FL: While FL is well-suited to loT systems, its effectiveness is influenced by the
unique characteristics of loT environments:

o Data Heterogeneity (Non-lID Data): Unlike centralized systems that train on a single, unified dataset, loT
devices often generate data with vastly different distributions. For example, smart thermostats in different
geographic locations will encounter distinct temperature patterns. This non-/ID (non-independent and identically
distributed) nature of data makes it harder for a single global model to generalize effectively across all devices.

e Resource Limitations: Most loT devices are lightweight in terms of computing power, memory, and energy.
Training even modest-sized models can exhaust battery life or exceed computational capacity, making it
necessary to optimize FL algorithms for efficiency.
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o Device Diversity: IoT ecosystems include a wide variety of devices with different architectures, operating
systems, sensors, and firmware. Ensuring compatibility and uniform performance across this diversity is a major
challenge for FL deployment.

e Unreliable Connectivity: loT devices often operate in environments with limited or intermittent internet access.
For example, remote agricultural sensors or wearable health monitors may lose connection frequently. FL
systems must be able to tolerate such conditions, potentially using asynchronous updates or offline training.

3. Comparative Analysis of FL Frameworks and Techniques in loT:
3.1 Overview of Frameworks
Federated Learning (FL) frameworks are software tools designed to facilitate distributed model training across multiple
clients while maintaining data privacy. Selecting the right FL framework is critical for effective deployment, especially in
resource-constrained and privacy-sensitive environments like I0T. Below is a detailed comparison of three widely adopted
FL frameworks—TFF (TensorFlow Federated), Flower, and FATE (Federated Al Technology Enabler)—evaluated
across architecture, machine learning support, loT suitability, and key features.
TensorFlow Federated (TFF)

e Architecture: TFF uses a centralized aggregator model. All updates from clients are sent to a central server for

aggregation.

e ML Support: Natively supports TensorFlow-based models.

o Suitability for loT: Moderate; while it is a powerful research tool, its computational overhead and tight coupling with

TensorFlow make it less ideal for lightweight loT devices.

o Key Features: Excellent for prototyping and experimentation; supports custom aggregation logic and federated
simulations.
Flower

e Architecture: Flower is designed with a flexible and modular topology. It can operate in centralized or
decentralized environments.

e ML Support: Compatible with multiple ML libraries, including PyTorch and TensorFlow.

o Suitability for loT: High; Flower is well-suited for real-world FL deployment, including heterogeneous and
resource-constrained loT devices.

o Key Features: Lightweight, scalable, supports real-device simulations, easy-to-extend APlIs, and built-in support
for cross-device communication.

FATE (Federated Al Technology Enabler)

e Architecture: Designed for enterprise-scale deployments, FATE supports a modular, privacy-centric architecture.

e ML Support: Compatible with TensorFlow, XGBoost, and other advanced ML models.

o Suitability for loT: Medium; FATE is more suitable for industrial use cases with strong security demands, such
as finance or healthcare.

o Key Features: Built-in support for advanced privacy-preserving techniques such as Homomorphic Encryption
(HE), Secure Multiparty Computation (SMPC), and Differential Privacy (DP). Supports both horizontal and vertical
federated learning.

3.2 FL IoT systems present unique challenges for FL due to data distribution, device limitations, and privacy concerns.
This has led to the development of various algorithms and supporting techniques designed to improve model performance,
security, and communication efficiency.
1. Core Federated Learning Algorithms
a. FedAvg (Federated Averaging):
¢ Description: The foundational FL algorithm proposed by Google, where local models are trained independently and
the server aggregates them by averaging the model weights.
¢ Advantages: Simple, efficient, and effective in homogeneous data settings.
¢ Limitations: Performs poorly with non-IID (non-identically distributed) data, which is common in loT environments
where each device collects different types of data.
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b. FedProx (Federated Proximal)

¢ Description: Extends FedAvg by adding a proximal term during local training to limit deviation from the global model.

¢ Advantages: Improves convergence and stability in the presence of heterogeneous data.

e Use Case in loT: Suitable for devices with skewed data distributions, such as smart home sensors or wearable
devices.

c. FedMA (Federated Matched Averaging) and FedDyn (Federated Dynamics)

o Description: These are personalized FL algorithms designed to adapt to device-specific data.
o FedMA matches and averages hidden units of neural networks.
e FedDyn dynamically adjusts optimization to minimize divergence from global training.
Advantages: High personalization, better performance on non-IID data.
Limitations: Increased complexity and computational cost, which may challenge resource-limited loT devices.

2. Communication Optimization Techniques: IoT devices often operate under bandwidth and energy constraints. The

following techniques are used to reduce communication overhead:

a. Model Pruning:
¢ Removes unnecessary model weights or neurons to reduce model size.
¢ Reduces update size and computation on IoT devices.

b. Quantization:

e Converts high-precision weights to lower-bit formats (e.g., float32 — int8).
o Decreases data transfer size with minimal loss in accuracy.

c. Sparsification
e Sends only the most significant gradients or weights (e.g., top-k updates).

e Improves bandwidth efficiency, especially important in unstable network conditions.

3.3 Security and Privacy Enhancements in Federated Learning: While Federated Learning (FL) offers inherent privacy

advantages by ensuring that raw data remains on local devices, it is not immune to security threats. Even without direct

data sharing, model updates can leak sensitive information through various attacks, such as:
e Model Inversion Attacks: Attempt to reconstruct original data from shared gradients.
o Membership Inference Attacks: Determine whether specific data was used to train the model.
e Poisoning Attacks: Malicious devices send manipulated updates to corrupt the global model.

To defend against these threats, several advanced privacy-preserving techniques are used in FL:

a. Differential Privacy (DP): What it does: Differential Privacy introduces random noise into the model updates (e.g.,

gradients or weights) before they are sent to the server. This noise ensures that individual data points cannot be

accurately reconstructed or identified.
e Prevents an attacker from determining whether a particular record was used in training.
e Provides strong, quantifiable privacy guarantees.
e Widely adopted in privacy-critical sectors like healthcare, finance, and surveillance.

DP is lightweight and can be implemented on constrained IoT devices (e.g., wearables, smart home hubs). However, the

added noise may slightly reduce model accuracy, requiring a balance between privacy and utility.

b. Homomorphic Encryption (HE): HE allows mathematical operations to be performed directly on encrypted data,
without requiring decryption. For FL, this means devices can encrypt their model updates, and the server can still
aggregate them correctly—without ever seeing the raw parameters.
¢ Raw model updates are never exposed in plaintext, even during aggregation.

e Strong cryptographic protection against eavesdropping or man-in-the-middle attacks.

While HE offers high privacy, it is computationally intensive. Most low-power loT devices may struggle to perform

homomorphic encryption due to processing and memory constraints. It is better suited to powerful edge servers or

gateway devices in the loT architecture.
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c. Secure Multiparty Computation (SMPC): SMPC splits data or computations into encrypted fragments that are
distributed across multiple parties. No single party has access to the full dataset or model update, but they can jointly
compute the desired result.
e Eliminates the need for a central trusted aggregator.
o Ensures strong privacy in collaborative FL across multiple data owners or organizations.
e Resistant to insider attacks.
SMPC is ideal for multi-organization or cross-vendor IoT networks, such as federated medical systems or smart traffic
networks where data ownership is distributed. However, the communication overhead and complexity make it more
appropriate for server-level coordination rather than device-level training.
4. Handling Heterogeneity in loT Devices
loT devices vary widely in data types, computation power, and network stability. To address this heterogeneity:
a. Clustered Federated Learning
e Groups devices with similar data distributions or capabilities.
e Each cluster trains its own specialized model.
¢ Reduces the negative impact of non-IID data on global model convergence.
b. Personalized Federated Learning
e Each device gets a customized local model fine-tuned from the global model.
e Techniques include meta-learning, transfer learning, and regularized local objectives.
e Balances global knowledge with local adaptation, improving prediction accuracy per device.
4. Challenges and Limitations of Federated Learning in loT: Despite the promise of Federated Learning (FL) in
preserving privacy and enabling distributed intelligence, its deployment in Internet of Things (IoT) environments presents
several significant challenges. These limitations stem from the unique properties of loT systems, including device diversity,
connectivity issues, limited resources, and dynamic environments.
e Communication Overhead and Latency: FL involves frequent exchanges of model updates between edge
devices and a central server or aggregator. In lIoT systems:
e Limited bandwidth and intermittent connectivity (e.g., rural sensors or battery-powered wearables) often lead
to delays or failures in communication.
e The repetitive transfer of model weights, even in compressed form, can strain network resources, especially in
large-scale deployments.
e Impact: Slower training, increased energy consumption, and dropped updates during transmission.
o Potential Solutions: Compression techniques (e.g., sparsification, quantization), asynchronous communication
protocols, or edge-level aggregation.
e Non-lID Data Distributions: loT devices often generate non-IID (non-independent and identically distributed)
data due to their diverse functions, locations, and users. For example:
e A smart thermostat in a cold region records very different temperature patterns than one in a tropical region.
e Slower convergence of the global model.
e Reduced generalizability and accuracy, as the global model may not fit well across all devices.
e Potential Solutions: Clustered FL, personalized FL, or weighting updates based on data quality and contribution.
¢ Resource Constraints of loT Devices: Most |oT devices are resource-constrained, with:
e Limited CPU, RAM, and battery power.
¢ Inability to train large or complex models locally.
e Devices may drop out of training cycles.
e Limits the complexity of models that can be trained locally, impacting performance.
e Potential Solutions: Model compression, lightweight architectures (e.g., MobileNet), offloading partial
computation to edge servers.
o Security Vulnerabilities: While FL improves data privacy by keeping data local, it introduces new security
threats:
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Model Inversion Attacks: Adversaries reconstruct sensitive data from shared model gradients.

Membership Inference: Identifying if a specific record was part of the training dataset.

Breach of user privacy, regulatory non-compliance.

Potential Solutions: Incorporate Differential Privacy (DP), Homomorphic Encryption (HE), or secure aggregation
protocols.

System Dynamics and Scalability: 0T environments are highly dynamic:

Devices may join or leave the network unpredictably due to power cycles, disconnections, or mobility (e.g.,
vehicles, drones).

Synchronization and model consistency become difficult when participants frequently change.

Unstable training cycles, leading to poor or delayed convergence.

Redundant or outdated model updates.

Potential Solutions: Use asynchronous FL protocols, enable local buffering of updates, adopt decentralized
learning architectures.

Data Poisoning Attacks: Malicious devices in the FL network may upload manipulated updates to corrupt the
global model intentionally

Degraded model accuracy or biased decision-making.

Potential real-world consequences in critical loT applications (e.g., healthcare, autonomous driving).

Defense Mechanisms:

Anomaly detection: Monitor updates for unusual patterns.

Robust aggregation: Techniques like Krum, Trimmed Mean, or Median eliminate or downweight suspicious
contributions.

5. Future Directions and Research Opportunities:

Efficient communication: Explore adaptive update frequency, edge aggregation.
Personalization: Develop methods balancing global performance with local relevance.
Advanced privacy: Improve HE and SMPC scalability for loT-scale deployment.
Scalable FL: Design asynchronous, decentralized protocols for dynamic environments.
Application-specific models: Tailor FL methods to domains like:

¢ Healthcare loT: Sensitive data, need for privacy.

e Smart cities: Real-time responsiveness, edge-cloud hybrid models.

e Smart agriculture: Intermittent data, remote deployment.

6. Conclusion: This review presents a critical comparison of FL frameworks and techniques tailored for loT
environments. Federated Learning shows considerable promise in overcoming the privacy, communication, and resource-
related challenges endemic to loT. Among frameworks, Flower stands out for flexibility and resource efficiency, while
FATE excels in security-centric deployments. However, key challenges—including data heterogeneity, communication
inefficiency, and dynamic system behavior—necessitate ongoing innovation. Future work should focus on lightweight,
secure, and personalized FL mechanisms that accommodate the unique characteristics of loT systems across domains.
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